Including Dominance Effects in the Genomic BLUP Method for Genomic Evaluation
نویسندگان
چکیده
We evaluated the performance of GBLUP including dominance genetic effect (GBLUP-D) by estimating variances and predicting genetic merits in a computer simulation and 2 actual traits (T4 and T5) in pigs. In simulation data, GBLUP-D explained more than 50% of dominance genetic variance. Moreover, GBLUP-D yielded estimated total genetic effects over 1.2% more accurate than those yielded by GBLUP. In particular, when the dominance genetic variance was large, the accuracy could be substantially improved by increasing the number of markers. The dominance genetic variances in T4 and T5 accounted for 9.6% and 6.3% of the phenotypic variances, respectively. Estimates of such small dominance genetic variances contributed little to the improvement of the accuracies of estimated total genetic effects. In both simulation and pig data, there were nearly no differences in the estimates of additive genetic effects or their variance between GBLUP-D and GBLUP. Therefore, we conclude GBLUP-D is a feasible approach to improve genetic performance in crossbred populations with large dominance genetic variation and identify mating systems with good combining ability.
منابع مشابه
Predictive Ability of Statistical Genomic Prediction Methods When Underlying Genetic Architecture of Trait Is Purely Additive
A simulation study was conducted to address the issue of how purely additive (simple) genetic architecture might impact on the efficacy of parametric and non-parametric genomic prediction methods. For this purpose, we simulated a trait with narrow sense heritability h2= 0.3, with only additive genetic effects for 300 loci in order to compare the predictive ability of 14 more practically used ge...
متن کاملصحت انتخاب ژنومی روشهای پارامتری و ناپارامتری با معماریهای ژنتیکی افزایشی و غالبیت
In most genomic prediction studies only additive effects will be used in models for estimating genomic breeding values (GEBV). However, dominance genetic effects are an important source of variation for complex traits, considering them into account may improve the accuracy of GEBV. In the present study, performed applying simulated data, the effect of different heritability values (0.1...
متن کاملComparing Different Marker Densities and Various Reference Populations Using Pedigree-Marker Best Linear Unbiased Prediction (BLUP) Model
In order to have successful application of genomic selection, reference population and marker density should be chosen properly. This study purpose was to investigate the accuracy of genomic estimated breeding values in terms of low (5K), intermediate (50K) and high (777K) densities in the simulated populations, when different scenarios were applied about the reference populations selecting. Af...
متن کاملGenetic evaluation using single-step genomic BLUP in American Angus
Introduction Genomic selection in beef cattle has currently been performed with multistep methods, which uses deregressed EBV to estimate SNP effects and then direct genomic value (DGV) for selection candidates based on their genotypes (Meuwissen et al., 2001; Garrick et al., 2009). The main advantage of this approach is that the traditional BLUP evaluation is kept unchanged and genomic selecti...
متن کاملUnraveling additive from nonadditive effects using genomic relationship matrices.
The application of quantitative genetics in plant and animal breeding has largely focused on additive models, which may also capture dominance and epistatic effects. Partitioning genetic variance into its additive and nonadditive components using pedigree-based models (P-genomic best linear unbiased predictor) (P-BLUP) is difficult with most commonly available family structures. However, the av...
متن کامل